When mathematical biology models are used to make quantitative predictions for clinical or industrial use, it is important that these predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises - where a mathematical model fails to recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for making accurate estimates of uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures (protocols) are used to produce data to train their models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments, which are used to investigate the kinetics of the hERG potassium ion channel. Here, `information-rich' protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. Typically, assuming independent observational errors and training a model to an individual experiment results in parameter estimates with very little dependence on observational noise. Moreover, parameter sets arising from the same model applied to different experiments often conflict - indicative of model discrepancy. Our methods will help select more suitable mathematical models of hERG for future studies, and will be widely applicable to a range of biological modelling problems.
翻译:当数学生物学模型被用于对临床或工业用途进行定量预测时,重要的是,这些预测应包含对其准确性的可靠估计(不确定性量化)。由于复杂的生物系统的模型总是大简化,模型差异就会出现——当数学模型未能对真实数据生成过程进行总结时,数学模型无法对真实数据生成过程进行重述。这对准确预测,特别是准确估计这些预测中的不确定性提出了特别的挑战。实验家和模型家必须选择使用哪些实验程序(protocols)来制作数据来训练模型。我们建议用一组参数的组合来说明由于模型差异而出现的不确定性,每个参数都是从培训到不同协议的数据。从这个数学模型的预测的变异性提供了由于模型差异而预测不确定性的实证估计,即使是对看不见的规程。我们用电物理实验的例子来调查HERG钾离子信道的动性。在这里,`信息丰富'协议允许利用在同一个细胞上进行的无数短期实验,每个参数组都是从培训到不同模型的精确性观测结果。一般情况下,假设独立G的参数的预测结果将用来对模型进行不同的实验。