Diffusion models have demonstrated their powerful generative capability in many tasks, with great potential to serve as a paradigm for offline reinforcement learning. However, the quality of the diffusion model is limited by the insufficient diversity of training data, which hinders the performance of planning and the generalizability to new tasks. This paper introduces AdaptDiffuser, an evolutionary planning method with diffusion that can self-evolve to improve the diffusion model hence a better planner, not only for seen tasks but can also adapt to unseen tasks. AdaptDiffuser enables the generation of rich synthetic expert data for goal-conditioned tasks using guidance from reward gradients. It then selects high-quality data via a discriminator to finetune the diffusion model, which improves the generalization ability to unseen tasks. Empirical experiments on two benchmark environments and two carefully designed unseen tasks in KUKA industrial robot arm and Maze2D environments demonstrate the effectiveness of AdaptDiffuser. For example, AdaptDiffuser not only outperforms the previous art Diffuser by 20.8% on Maze2D and 7.5% on MuJoCo locomotion, but also adapts better to new tasks, e.g., KUKA pick-and-place, by 27.9% without requiring additional expert data.
翻译:传播模型已经在许多任务中展示了强大的基因化能力,具有巨大的潜力作为脱线强化学习的范例,然而,由于培训数据的多样性不足,传播模型的质量受到了培训数据不够多样化的限制,妨碍了规划的绩效和对新任务的一般性。本文件介绍了适应Diffuser, 这是一个自我推广的进化规划方法,可以自我促进改进传播模型,从而不仅对可见的任务而言,而且能够适应不可见的任务。适应Diffuser不仅能够利用奖励梯度的指引,为达到目标的任务生成丰富的合成专家数据。然后通过歧视者选择高质量的数据,对传播模型进行微调,以提高对不可见任务的一般化能力。在KUKA工业机械臂和Maze2D环境中,对两种精心设计的不可见的任务进行了实验,展示了适应Diffuser的有效性。例如,适应Diffuser不仅使以前的Diffuser在Maze2D和Mujoco Locovalation上完成了20.8%的艺术, 7.5%的合成专家数据。它随后通过歧视者选择了传播模型,提高了传播模型的普及能力,提高了对未见识任务的普及能力。