In semi-supervised graph-based binary classifier learning, a subset of known labels $\hat{x}_i$ are used to infer unknown labels, assuming that the label signal $\mathbf{x}$ is smooth with respect to a similarity graph specified by a Laplacian matrix. When restricting labels $x_i$ to binary values, the problem is NP-hard. While a conventional semi-definite programming relaxation (SDR) can be solved in polynomial time using, for example, the alternating direction method of multipliers (ADMM), the complexity of projecting a candidate matrix $\mathbf{M}$ onto the positive semi-definite (PSD) cone ($\mathbf{M} \succeq 0$) per iteration remains high. In this paper, leveraging a recent linear algebraic theory called Gershgorin disc perfect alignment (GDPA), we propose a fast projection-free method by solving a sequence of linear programs (LP) instead. Specifically, we first recast the SDR to its dual, where a feasible solution $\mathbf{H} \succeq 0$ is interpreted as a Laplacian matrix corresponding to a balanced signed graph minus the last node. To achieve graph balance, we split the last node into two, each retains the original positive / negative edges, resulting in a new Laplacian $\bar{\mathbf{H}}$. We repose the SDR dual for solution $\bar{\mathbf{H}}$, then replace the PSD cone constraint $\bar{\mathbf{H}} \succeq 0$ with linear constraints derived from GDPA -- sufficient conditions to ensure $\bar{\mathbf{H}}$ is PSD -- so that the optimization becomes an LP per iteration. Finally, we extract predicted labels from converged solution $\bar{\mathbf{H}}$. Experiments show that our algorithm enjoyed a $28\times$ speedup over the next fastest scheme while achieving comparable label prediction performance.


翻译:在半监督的基于图形的二进制分解器学习中,一个已知标签的子集 $\ h{x{x} 用于推断未知标签,假设标签的信号$\ mathbf{x} 美元对于Laplacian 矩阵指定的类似图形是平滑的。 当限制标签$x_ 美元到二进制值时, 问题在于 NP 硬性。 虽然一个常规的半确定性编程松动( SDR) 可以在多元时间中解决, 例如, 使用乘数交替方向方法( ADMM), 将候选人矩阵的复杂性能 $\ mathb{M} 投影 至正半确定性图 。 我们首先将SDR== dirmaxl=l=l=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员