In this paper, we present several new results on minimizing a nonsmooth and nonconvex function under a Lipschitz condition. Recent work shows that while the classical notion of Clarke stationarity is computationally intractable up to some sufficiently small constant tolerance, the randomized first-order algorithms find a $(\delta, \epsilon)$-Goldstein stationary point with the complexity bound of $\tilde{O}(\delta^{-1}\epsilon^{-3})$, which is independent of dimension $d \geq 1$~\citep{Zhang-2020-Complexity, Davis-2022-Gradient, Tian-2022-Finite}. However, the deterministic algorithms have not been fully explored, leaving open several problems in nonsmooth nonconvex optimization. Our first contribution is to demonstrate that the randomization is \textit{necessary} to obtain a dimension-independent guarantee, by proving a lower bound of $\Omega(d)$ for any deterministic algorithm that has access to both $1^{st}$ and $0^{th}$ oracles. Furthermore, we show that the $0^{th}$ oracle is \textit{essential} to obtain a finite-time convergence guarantee, by showing that any deterministic algorithm with only the $1^{st}$ oracle is not able to find an approximate Goldstein stationary point within a finite number of iterations up to sufficiently small constant parameter and tolerance. Finally, we propose a deterministic smoothing approach under the \textit{arithmetic circuit} model where the resulting smoothness parameter is exponential in a certain parameter $M > 0$ (e.g., the number of nodes in the representation of the function), and design a new deterministic first-order algorithm that achieves a dimension-independent complexity bound of $\tilde{O}(M\delta^{-1}\epsilon^{-3})$.


翻译:在本文中, 我们在 Lipschitz 状态下, 我们展示了一些关于将非mooth 和非convex 函数最小化的新结果。 最近的工作显示, 虽然Clarke Stabiticity的经典概念在计算上难以达到某种足够小的恒定容忍度, 但是随机的一阶算法在 $\ delta,\ epsilon) $- Goldstein 固定点中发现一个 $\ text{ O} (\ delta ⁇ -1\ ⁇ epsilon}-3} 美元( leveltical $1 $@ citireq $ (cleq) $@ citeq) hang- 2020- Complexlecility, 戴维斯-2022- graditaltientaltientle, Tian-2022- folministrical valticolations 在 $ $_stal decal decal_ dreal_ dalnal_ dalnationslationslation, as a firstild.

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月28日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
14+阅读 · 2020年12月17日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员