We study the problem of exact support recovery for high-dimensional sparse linear regression when the signals are weak, rare and possibly heterogeneous. Specifically, we fix the minimum signal magnitude at the information-theoretic optimal rate and investigate the asymptotic selection accuracy of best subset selection (BSS) and marginal screening (MS) procedures under independent Gaussian design. Despite of the ideal setup, somewhat surprisingly, marginal screening can fail to achieve exact recovery with probability converging to one in the presence of heterogeneous signals, whereas BSS enjoys model consistency whenever the minimum signal strength is above the information-theoretic threshold. To mitigate the computational issue of BSS, we also propose a surrogate two-stage algorithm called ETS (Estimate Then Screen) based on iterative hard thresholding and gradient coordinate screening, and we show that ETS shares exactly the same asymptotic optimality in terms of exact recovery as BSS. Finally, we present a simulation study comparing ETS with LASSO and marginal screening. The numerical results echo with our asymptotic theory even for realistic values of the sample size, dimension and sparsity.


翻译:具体地说,我们用信息理论最佳率确定最低信号量,并调查独立高森设计下最佳子集选择(BSS)和边际筛选(MS)程序的无症状选择精确度。尽管设计理想,但有些令人惊讶的是,边际筛选可能无法实现精确恢复,在有异差信号的情况下,概率可能与光谱信号相融合,而BSS在最小信号强度超过信息理论阈值时享有模范一致性。为了减轻BSS的计算问题,我们还提议以迭接硬阈值和梯度协调筛选为基础,采用称为ETS(Esterimate Theter Secreen)的两阶段代算法(ETS(Ester Then Secreat)),我们表明,在精确恢复方面,ETS与BSS完全相同。最后,我们提出将ETS与LASSO和边际筛选进行比较的模拟研究。数字结果与我们的随机理论相呼应,甚至反映了样本大小、尺寸和广度的现实值。

0
下载
关闭预览

相关内容

ETS:European Test Symposium。 Explanation:欧洲测试研讨会。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/ets/
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员