Physical adversarial examples (PAEs) are regarded as whistle-blowers of real-world risks in deep-learning applications, thus worth further investigation. However, current PAE generation studies show limited adaptive attacking ability to diverse and varying scenes, revealing the urgent requirement of dynamic PAEs that are generated in real time and conditioned on the observation from the attacker. The key challenge in generating dynamic PAEs is learning the sparse relation between PAEs and the observation of attackers under the noisy feedback of attack training. To address the challenge, we present DynamicPAE, the first generative framework that enables scene-aware real-time physical attacks. Specifically, to address the noisy feedback problem that obfuscates the exploration of scene-related PAEs, we introduce the residual-guided adversarial pattern exploration technique. Residual-guided training, which relaxes the attack training with a reconstruction task, is proposed to enrich the feedback information, thereby achieving a more comprehensive exploration of PAEs. To address the alignment problem between the trained generator and the real-world scenario, we introduce the distribution-matched attack scenario alignment, consisting of the conditional-uncertainty-aligned data module and the skewness-aligned objective re-weighting module. The former aligns the training environment with the incomplete observation of the real-world attacker. The latter facilitates consistent stealth control across different attack targets with the skewness controller. Extensive digital and physical evaluations demonstrate the superior attack performance of DynamicPAE, attaining a 2.07 $\times$ boost (58.8% average AP drop under attack) on representative object detectors (e.g., DETR) over state-of-the-art static PAE generating methods. Overall, our work opens the door to end-to-end modeling of dynamic PAEs.
翻译:暂无翻译