This paper presents a mathematical formulation to perform temporal parallelisation of continuous-time optimal control problems, which are solved via the Hamilton--Jacobi--Bellman (HJB) equation. We divide the time interval of the control problem into sub-intervals, and define a control problem in each sub-interval, conditioned on the start and end states, leading to conditional value functions for the sub-intervals. By defining an associative operator as the minimisation of the sum of conditional value functions, we obtain the elements and associative operators for a parallel associative scan operation. This allows for solving the optimal control problem on the whole time interval in parallel in logarithmic time complexity in the number of sub-intervals. We derive the HJB-type of backward and forward equations for the conditional value functions and solve them in closed form for linear quadratic problems. We also discuss other numerical methods for computing the conditional value functions and present closed form solutions for selected special cases. The computational advantages of the proposed parallel methods are demonstrated via simulations run on a multi-core central processing unit and a graphics processing unit.
翻译:本文提出一个数学公式,用于对连续时间最佳控制问题进行时间平行处理,这些问题通过汉密尔顿- Jacobi- Bellman (HJB) 等式解决。我们将控制问题的时间间隔分为次中间值,并在每个次中间点确定一个控制问题,以开始和结束状态为条件,导致次中间点的有条件值功能。我们通过将关联操作员定义为有条件值功能之和的最小化,为平行联合扫描操作获取元素和关联操作员。这样就可以解决整个时间间隔的最佳控制问题,在次中间点数的对数复杂度中同时解决。我们为条件值函数的后方和前方方方方方方方方方方方方,并以封闭的形式解决线形问题。我们还讨论计算有条件值功能和为选定的特殊案例提供封闭形式解决方案的其他数字方法。通过在多核心处理器和图形处理器上进行模拟,可以证明拟议的平行方法的计算优势。