We propose a sequential, anytime-valid method to test the conditional independence of a response $Y$ and a predictor $X$ given a random vector $Z$. The proposed test is based on e-statistics and test martingales, which generalize likelihood ratios and allow valid inference at arbitrary stopping times. In accordance with the recently introduced model-X setting, our test depends on the availability of the conditional distribution of $X$ given $Z$, or at least a sufficiently sharp approximation thereof. Within this setting, we derive a general method for constructing e-statistics for testing conditional independence, show that it leads to growth-rate optimal e-statistics for simple alternatives, and prove that our method yields tests with asymptotic power one in the special case of a logistic regression model. A simulation study is done to demonstrate that the approach is competitive in terms of power when compared to established sequential and nonsequential testing methods, and robust with respect to violations of the model-X assumption.
翻译:我们建议采用连续、随时有效的方法来测试应答美元和预测值美元在有条件上的独立性,对随机矢量为Z美元。拟议测试以电子统计和测试马丁酸为基础,该测试将概率比率普遍化,并允许任意停留时间的有效推断。根据最近采用的模型-X设定,我们的测试取决于有条件分配的X美元给Z美元,或至少是足够精确的近似值。在此背景下,我们得出了为测试有条件独立而构建电子统计学的一般方法,表明该方法导致简单替代品采用增长率最佳电子统计,并证明我们的方法产生无药性能力测试,在物流回归模型的特殊情况下采用这种测试。进行模拟研究是为了表明,与既定的顺序和非顺序测试方法相比,该方法在实力方面具有竞争力,而且对于违反模型-X假设的情况具有很强性。