Bootstrap inference is a powerful tool for obtaining robust inference for quantiles and difference-in-quantiles estimators. The computationally intensive nature of bootstrap inference has made it infeasible in large-scale experiments. In this paper, the theoretical properties of the Poisson bootstrap algorithm and quantile estimators are used to derive alternative resampling-free algorithms for Poisson bootstrap inference that reduce the the computational complexity substantially without additional assumptions. The results unlock bootstrap inference for almost arbitrarily large samples. At Spotify, we can now easily calculate bootstrap confidence intervals for quantiles and difference-in-quantiles in A/B tests with hundreds of millions of observations.
翻译:诱杀装置推论是获得对四分位数和量数差异估测器的有力推论的有力工具。 靴子陷阱推论的计算密集性使得在大规模实验中无法进行这种推论。 在本文中, Poisson 靴子陷阱算法和四分位估测器的理论特性被用来为Poisson 靴子陷阱推论获得替代的免试算法,这种推论在没有额外假设的情况下大大降低了计算复杂性。 几乎是任意大型样本的释放靴子陷阱推论结果。 在Potify, 我们现在可以很容易地计算A/B测试中的量和量差异的靴子陷阱置信度间隔, 并用数以亿计的观测结果来计算。