Rapidly exploring random trees (RRTs) have proven effective in quickly finding feasible solutions to complex motion planning problems. RRT* is an extension of the RRT algorithm that provides probabilistic asymptotic optimality guarantees when using straight-line motion primitives. This work provides extensions to RRT and RRT* that employ fillets as motion primitives, allowing path curvature constraints to be considered when planning. Two fillets are developed, an arc-based fillet that uses circular arcs to generate paths that respect maximum curvature constraints and a spline-based fillet that uses Bezier curves to additionally respect curvature continuity requirements. Planning with these fillets is shown to far exceed the performance of RRT* using Dubin's path motion primitives, approaching the performance of planning with straight-line path primitives. Path sampling heuristics are also introduced to accelerate convergence for nonholonomic motion planning. Comparisons to established RRT* approaches are made using the Open Motion Planning Library (OMPL).
翻译:快速探索随机树(RRRT*)是RRT算法的延伸,它提供了使用直线运动原体时的概率性无症状最佳性保证。这项工作为RRT和RRT*提供了延伸,将填充物作为运动原始体,允许在规划时考虑路径曲线限制。开发了两个填充物,一个以弧为基础的填充物,用圆弧产生尊重最大曲线限制的路径,以及一个使用贝塞尔曲线来进一步尊重曲线连续性要求的样板填充物。这些填充物的规划远远超过RRT* 的性能,使用Dubin的路径运动原体,接近用直线原始体进行规划的性能。还引入了路径采样超常学,以加速非光谱运动规划的趋同。正在使用开放运动规划图书馆(OMPL)对已经建立的 RRT* 方法进行比较。