We consider a distributionally robust stochastic optimization problem and formulate it as a stochastic two-level composition optimization problem with the use of the mean--semideviation risk measure. In this setting, we consider a single time-scale algorithm, involving two versions of the inner function value tracking: linearized tracking of a continuously differentiable loss function, and SPIDER tracking of a weakly convex loss function. We adopt the norm of the gradient of the Moreau envelope as our measure of stationarity and show that the sample complexity of $\mathcal{O}(\varepsilon^{-3})$ is possible in both cases, with only the constant larger in the second case. Finally, we demonstrate the performance of our algorithm with a robust learning example and a weakly convex, non-smooth regression example.
翻译:我们认为一个分布上稳健的随机优化问题, 并把它设计成使用平均缓冲风险测量的双层结构优化问题。 在这种环境下, 我们考虑一个单一的时间尺度算法, 涉及两个版本的内部功能值跟踪: 持续差异损失函数的线性跟踪, 以及天基信息平台对弱结流损失函数的跟踪。 我们采用莫罗信封梯度的规范作为我们固定性的衡量标准, 并显示在两种情况下, $\mathcal{O} (\varepsilon}-3}) 的样本复杂性都是可能的, 在第二种情况下, 只有恒值更大。 最后, 我们展示了我们的算法的性能, 并展示了一个强大的学习范例和一个弱结结的、 非移动式的回归示例 。