Disentanglement is a useful property in representation learning which increases the interpretability of generative models such as Variational Auto-Encoders (VAE), Generative Adversarial Models, and their many variants. Typically in such models, an increase in disentanglement performance is traded-off with generation quality. In the context of latent space models, this work presents a representation learning framework that explicitly promotes disentanglement by encouraging orthogonal directions of variations. The proposed objective is the sum of an auto-encoder error term along with a Principal Component Analysis reconstruction error in the feature space. This has an interpretation of a Restricted Kernel Machine with an interconnection matrix on the Stiefel manifold. Our analysis shows that such a construction promotes disentanglement by matching the principal directions in latent space with the directions of orthogonal variation in data space. The training algorithm involves a stochastic optimization method on the Stiefel manifold, which increases only marginally the computing time compared to an analogous VAE. Our theoretical discussion and various experiments show that the proposed model improves over many VAE variants in terms of both generation quality and disentangled representation learning.
翻译:解析是代表性学习中的一种有益属性,它增加了变异自动- Encolders(VAE)等基因模型及其许多变异模型的可解释性。通常,在这类模型中,解脱性性能的增加与生成质量是互换的。在潜伏空间模型中,这项工作提出了一个代表性学习框架,通过鼓励差异的正方位方向,明确促进解脱性。拟议目标是自动编码错误术语和特征空间主要组成部分分析重建错误之和。这是对一个在Stiefel 组合中具有互联矩阵的受限制核心机的解释。我们的分析表明,这种构造通过将潜在空间的主要方向与数据空间的正方位变化方向相匹配,促进分解性。培训算法涉及对Stiefel 多重的随机优化方法,与类似的 VAE 相比,这只使计算时间略有增加。我们的理论讨论和各种实验表明,拟议的模型在一代质量和分位变量的学习方面改进了许多VAE变量。