The field of meta-learning seeks to improve the ability of today's machine learning systems to adapt efficiently to small amounts of data. Typically this is accomplished by training a system with a parametrized update rule to improve a task-relevant objective based on supervision or a reward function. However, in many domains of practical interest, task data is unlabeled, or reward functions are unavailable. In this paper we introduce a new approach to address the more general problem of generative meta-learning, which we argue is an important prerequisite for obtaining human-level cognitive flexibility in artificial agents, and can benefit many practical applications along the way. Our contribution leverages the AEVB framework and mean-field variational Bayes, and creates fast-adapting latent-space generative models. At the heart of our contribution is a new result, showing that for a broad class of deep generative latent variable models, the relevant VB updates do not depend on any generative neural network. The theoretical merits of our approach are reflected in empirical experiments.


翻译:元学习领域力求提高当今机器学习系统的能力,以便有效地适应少量数据。通常,通过培训一个具有平衡更新规则的系统,在监督或奖励功能的基础上改进与任务有关的目标,来实现这一目标。然而,在许多实际感兴趣的领域,任务数据没有标签,或没有奖励功能。在本文件中,我们引入了一种新办法,以解决基因化元学习这一更为普遍的问题,我们认为,这是在人工剂中获得人的水平认知灵活性的重要先决条件,并能够使许多实际应用不断受益。我们的贡献利用了AEVB框架和平均场变异海湾,创造了快速适应的潜空基因化模型。我们贡献的核心是一个新结果,表明对于一系列深层基因化潜在变异模型来说,相关的VB更新并不取决于任何基因化神经网络。我们方法的理论优点反映在实验中。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2020年10月7日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
13+阅读 · 2019年1月26日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
8+阅读 · 2020年10月7日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
13+阅读 · 2019年1月26日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
11+阅读 · 2018年7月8日
Top
微信扫码咨询专知VIP会员