While energy-based models (EBMs) exhibit a number of desirable properties, training and sampling on high-dimensional datasets remains challenging. Inspired by recent progress on diffusion probabilistic models, we present a diffusion recovery likelihood method to tractably learn and sample from a sequence of EBMs trained on increasingly noisy versions of a dataset. Each EBM is trained with recovery likelihood, which maximizes the conditional probability of the data at a certain noise level given their noisy versions at a higher noise level. Optimizing recovery likelihood is more tractable than marginal likelihood, as sampling from the conditional distributions is much easier than sampling from the marginal distributions. After training, synthesized images can be generated by the sampling process that initializes from Gaussian white noise distribution and progressively samples the conditional distributions at decreasingly lower noise levels. Our method generates high fidelity samples on various image datasets. On unconditional CIFAR-10 our method achieves FID 9.58 and inception score 8.30, superior to the majority of GANs. Moreover, we demonstrate that unlike previous work on EBMs, our long-run MCMC samples from the conditional distributions do not diverge and still represent realistic images, allowing us to accurately estimate the normalized density of data even for high-dimensional datasets. Our implementation is available at https://github.com/ruiqigao/recovery_likelihood.


翻译:虽然基于能源的模型(EBMS)展示了一些可取的特性,但高维数据集的培训和取样仍然具有挑战性。受最近在扩散概率模型方面进展的启发,我们提出了一个扩散回收可能性方法,以便从经过越来越吵的数据集版本培训的EBM系列中,从一系列以越来越吵的版本为对象的数据集中进行可移动的学习和抽样。每个EBM都经过了恢复可能性的培训,从而在较高的噪音水平上将数据在某种噪音水平上有条件的概率最大化。优化恢复可能性比边缘数据集的可能性要容易得多,因为从有条件分布中取样比从边际分布中取样要容易得多。经过培训后,综合图像可以通过采样过程产生,从高尚的白色噪音分布开始,并逐步在低的噪音水平上采集有条件分布的样本。我们的方法在各种图像数据集中产生了高度的忠实样本。关于我们的方法在FID 9.58和初始分数为830分,比大多数GANs还高。此外,我们证明与以前关于EBMBMMCs的取样比在边缘分布上要容易得多。我们长期的样本比常规的MMCMqrassmissmissionalalalismissation/commission suplieval dal dal dal dalation 。我们现有的数据可以精确地显示数据到高。我们现有的数据得到高。我们现有的数据在高的分辨率数据是不差。我们现有的数据。我们可以精确地显示数据。我们现有的数据在高到高到高的精确度/高。我们的数据和高度分布。我们的数据。让我们度分布不差。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月21日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Deep Learning for Energy Markets
Arxiv
8+阅读 · 2019年4月10日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
5+阅读 · 2018年1月17日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员