We propose a multimodal (vision-and-language) benchmark for cooperative and heterogeneous multi-agent learning. We introduce a benchmark multimodal dataset with tasks involving collaboration between multiple simulated heterogeneous robots in a rich multi-room home environment. We provide an integrated learning framework, multimodal implementations of state-of-the-art multi-agent reinforcement learning techniques, and a consistent evaluation protocol. Our experiments investigate the impact of different modalities on multi-agent learning performance. We also introduce a simple message passing method between agents. The results suggest that multimodality introduces unique challenges for cooperative multi-agent learning and there is significant room for advancing multi-agent reinforcement learning methods in such settings.
翻译:我们为合作和多种不同的多试剂学习提出了一个多式(视觉和语言)基准。我们引入了一个基准多式数据集,其任务涉及多种模拟的多式机器人在丰富的多房间家庭环境中的协作。我们提供了一个综合学习框架,以多式方式实施最先进的多剂强化学习技术,以及一个一致的评价协议。我们的实验调查了不同模式对多剂学习绩效的影响。我们还引入了一种在各种代理商之间传递信息的简单方法。结果显示,多式化给多剂合作学习带来了独特的挑战,在这种环境下,在推进多剂强化学习方法方面有很大的空间。