Hierarchical reinforcement learning (HRL) effectively improves agents' exploration efficiency on tasks with sparse reward, with the guide of high-quality hierarchical structures (e.g., subgoals or options). However, how to automatically discover high-quality hierarchical structures is still a great challenge. Previous HRL methods can hardly discover the hierarchical structures in complex environments due to the low exploration efficiency by exploiting the randomness-driven exploration paradigm. To address this issue, we propose CDHRL, a causality-driven hierarchical reinforcement learning framework, leveraging a causality-driven discovery instead of a randomness-driven exploration to effectively build high-quality hierarchical structures in complicated environments. The key insight is that the causalities among environment variables are naturally fit for modeling reachable subgoals and their dependencies and can perfectly guide to build high-quality hierarchical structures. The results in two complex environments, 2D-Minecraft and Eden, show that CDHRL significantly boosts exploration efficiency with the causality-driven paradigm.


翻译:高等级结构(例如次级目标或备选办法)的指引,有效提高高等级结构(例如次级目标或备选办法)在微薄报酬的任务上的探索效率。然而,如何自动发现高等级结构仍是一个巨大的挑战。以往的人力资源方法很难发现复杂环境中的等级结构,因为利用随机性驱动的勘探模式,勘探效率较低。为解决这一问题,我们提议CDHRL,一个因因果关系驱动的等级强化学习框架,利用因因果关系驱动的发现,而不是随机驱动的探索,在复杂环境中有效地建立高质量的等级结构。关键的看法是,环境变量的因果关系自然适合构建可实现的次级目标及其依赖性,并且能够完美地指导建立高质量的等级结构。在两个复杂环境中,即2D-矿物和Eden,结果显示CDHRL大大提升了因因果关系驱动的范式的勘探效率。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Hierarchical Phrase-based Sequence-to-Sequence Learning
Arxiv
21+阅读 · 2022年11月8日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员