Graph neural networks (GNN) have been ubiquitous in graph node classification tasks. Most of GNN methods update the node embedding iteratively by aggregating its neighbors' information. However, they often suffer from negative disturbance, due to edges connecting nodes with different labels. One approach to alleviate this negative disturbance is to use attention to learn the weights of aggregation, but current attention-based GNNs only consider feature similarity and also suffer from the lack of supervision. In this paper, we consider the label dependency of graph nodes and propose a decoupling attention mechanism to learn both hard and soft attention. The hard attention is learned on labels for a refined graph structure with fewer inter-class edges, so that the aggregation's negative disturbance can be reduced. The soft attention aims to learn the aggregation weights based on features over the refined graph structure to enhance information gains during message passing. Particularly, we formulate our model under the EM framework, and the learned attention is used to guide the label propagation in the M-step and the feature propagation in the E-step, respectively. Extensive experiments are performed on six well-known benchmark graph datasets to verify the effectiveness of the proposed method.


翻译:图形节点分类任务( GNN) 。 GNN 方法大多通过汇集邻居的信息来更新节点的迭代嵌入。 但是,由于连接节点和不同标签的边缘,它们经常受到负面干扰。 缓解这种负面扰动的方法之一是利用注意力来了解聚合的重量, 但当前基于关注的GNN 仅仅考虑到特征相似性, 也缺乏监督。 在本文中, 我们考虑图形节点的标签依赖性, 并提议一个脱钩关注机制, 以学习硬和软的注意。 对精细的图表结构的标签有强烈的注意, 从而可以减少组合的负面扰动。 软关注的目的是根据精细的图形结构的特征来学习汇总权重, 以便在信息传递过程中加强信息收益。 特别是, 我们根据EM 框架来制定我们的模型, 所学到的注意力被用来指导M级的标签传播和E级的特征传播。 广泛实验分别在六个众所周知的基准图表方法上进行, 以核实拟议的有效性。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
26+阅读 · 2018年2月27日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员