The covariance matrix plays a fundamental role in many modern exploratory and inferential statistical procedures, including dimensionality reduction, hypothesis testing, and regression. In low-dimensional regimes, where the number of observations far exceeds the number of variables, the optimality of the sample covariance matrix as an estimator of this parameter is well-established. High-dimensional regimes do not admit such a convenience, however. As such, a variety of estimators have been derived to overcome the shortcomings of the sample covariance matrix in these settings. Yet, the question of selecting an optimal estimator from among the plethora available remains largely unaddressed. Using the framework of cross-validated loss-based estimation, we develop the theoretical underpinnings of just such an estimator selection procedure. In particular, we propose a general class of loss functions for covariance matrix estimation and establish finite-sample risk bounds and conditions for the asymptotic optimality of the cross-validated estimator selector with respect to these loss functions. We evaluate our proposed approach via a comprehensive set of simulation experiments and demonstrate its practical benefits by application in the exploratory analysis of two single-cell transcriptome sequencing datasets. A free and open-source software implementation of the proposed methodology, the cvCovEst R package, is briefly introduced.
翻译:共变矩阵在许多现代探索和推断统计程序中起着根本作用,包括维度减少、假设测试和回归。在低维系统中,观测数量远远超过变量数量,抽样共变矩阵作为该参数的估测器的最佳性已经确立。高维系统不承认这种便利。因此,为克服这些环境中抽样共变矩阵的缺点,已得出各种估计器。然而,从现有多成数中选择最佳估测器的问题仍然基本上没有得到解决。我们利用交叉验证的损失估计框架,为这种估算器的选择程序制定了理论基础。特别是,我们提议为共变矩阵估计设定一般损失功能类别,并为这些假设的交叉验证估算器选择器的短暂性最佳性设定了风险界限和条件。我们通过一套全面的模拟试验试验和基于损失的估算法,通过应用拟议的单一数据序列的测试模型,展示了其实际排序方法。