We propose nonparametric estimators for the second-order central moments of possibly anisotropic spherical random fields, within a functional data analysis context. We consider a measurement framework where each random field among an identically distributed collection of spherical random fields is sampled at a few random directions, possibly subject to measurement error. The collection of random fields could be i.i.d. or serially dependent. Though similar setups have already been explored for random functions defined on the unit interval, the nonparametric estimators proposed in the literature often rely on local polynomials, which do not readily extend to the (product) spherical setting. We therefore formulate our estimation procedure as a variational problem involving a generalized Tikhonov regularization term. The latter favours smooth covariance/autocovariance functions, where the smoothness is specified by means of suitable Sobolev-like pseudo-differential operators. Using the machinery of reproducing kernel Hilbert spaces, we establish representer theorems that fully characterize the form of our estimators. We determine their uniform rates of convergence as the number of random fields diverges, both for the dense (increasing number of spatial samples) and sparse (bounded number of spatial samples) regimes. We moreover demonstrate the computational feasibility and practical merits of our estimation procedure in a simulation setting, assuming a fixed number of samples per random field. Our numerical estimation procedure leverages the sparsity and second-order Kronecker structure of our setup to reduce the computational and memory requirements by approximately three orders of magnitude compared to a naive implementation would require.
翻译:我们提议在功能性数据分析范围内,对第二阶中心时点(可能具有厌异球性随机字段)进行非参数估计。我们考虑一个测量框架,在这个框架中,对分布相同的球类随机字段的每个随机字段进行随机抽样,可能受到测量错误的影响。随机字段的收集可以是i.d.或序列依赖。虽然已经为单位间隔上定义的随机功能探索了类似的设置,但文献中提议的非参数估计序列往往依赖于本地多数值,这不易延伸到(产品)球状设置。因此,我们将我们的估算程序设计成一个变化性问题,涉及通用的Tikhonov常规术语。后者有利于顺差/自变功能,而光滑的字段的收集可以是i.d.d.或依序而定。虽然已经对单位间隔上定义的随机功能进行了类似的设置。虽然文献中提议的非参数往往取决于本地多数值,但不会轻易扩展到(产品)球状的多数值。因此,我们将我们的估算程序作为一个变异的变异的变异性问题程序来制定我们的估算程序。 我们确定其统一比率, 并用不断的实地计算模型的实地计算方法, 将显示我们空间模型的精确模型的精确的计算过程的精确的精确性计算过程。