Phylogenetic trait evolution models allow for the estimation of evolutionary correlations between a set of traits observed in a sample of related organisms. By directly modeling the evolution of the traits on a phylogenetic tree in a Bayesian framework, the model's structure allows us to control for shared evolutionary history. In these models, relevant correlations are assessed through a post-process procedure based on the high posterior density interval of marginal correlations. However, the selected correlations alone may not provide all available information regarding trait relationships. Their association structure, in contrast, is likely to express some sparsity pattern and provide straightforward information about direct associations between traits. In order to employ a model-based method to identify this association structure we explore the use of Gaussian graphical models (GGM) for covariance selection. We model the precision matrix with a G-Wishart conjugate prior, which results in sparse precision estimates. We evaluate our approach through Monte Carlo simulations and applications that examine the association structure and evolutionary correlations of phenotypic traits in Darwin's finches and genomic and phenotypic traits in prokaryotes. Our approach provides accurate graph estimates and lower errors for the precision and correlation parameter estimates, especially for conditionally independent traits, which are the target for sparsity in GGMs.


翻译:相貌特征进化模型可以估计在相关生物样本中观察到的一组特征之间的进化相关性。 通过直接模拟贝叶西亚框架中的植物基因树特征的演变,模型的结构使我们能够控制共同进化历史。在这些模型中,相关的关联是通过后处理程序根据边际相关性的高后密度间隔评估的。然而,仅选取的关联可能无法提供有关特征关系的所有可用信息。相比之下,它们的关联结构可能显示某些孔径模式,并提供关于各特征之间直接关联的直截了当的信息。为了使用基于模型的方法确定这种关联结构,我们探索使用高斯人图形模型(GGGGM)来选择共变异性。我们用G-Wishart相形模型之前的精度矩阵模型,从而得出少许的精确估计。我们通过蒙特卡洛模拟和应用来评估我们的方法,以研究达尔文的卷、基因组和基因组的特征的进化相关性和进化关联关系。为了确定这种关联结构,我们探索使用基于模型的关联性结构的结构结构,我们用G-Wishart Conjuggates 的精确度和正数的精确度和正数的参数,特别是为我们的精确性数据中的精确度和正位的精确度的精确度。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
31+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月12日
Arxiv
0+阅读 · 2022年8月11日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员