Wasserstein distributionally robust optimization has recently emerged as a powerful framework for robust estimation, enjoying good out-of-sample performance guarantees, well-understood regularization effects, and computationally tractable dual reformulations. In such framework, the estimator is obtained by minimizing the worst-case expected loss over all probability distributions which are close, in a Wasserstein sense, to the empirical distribution. In this paper, we propose a Wasserstein distributionally robust M-estimation framework to estimate an unknown parameter from noisy linear measurements, and we focus on the important and challenging task of analyzing the squared error performance of such estimators. Our study is carried out in the modern high-dimensional proportional regime, where both the ambient dimension and the number of samples go to infinity, at a proportional rate which encodes the under/over-parametrization of the problem. Under an isotropic Gaussian features assumption, we show that the squared error can be recover as the solution of a convex-concave optimization problem which, surprinsingly, involves at most four scalar variables. To the best of our knowledge, this is the first work to study this problem in the context of Wasserstein distributionally robust M-estimation.
翻译:瓦塞斯特因分布上强强的优化最近已成为一个强有力的可靠估算框架,它享有良好的超模性绩效保障、完全理解的正规化效果以及可计算到的双重重塑。在这个框架内,估计者是通过最大限度地减少所有概率分布中最坏的预期损失而获得的,从瓦塞斯特因的意义上讲,这些概率分布接近于经验分布。在本文中,我们提出了一个瓦塞斯特因分布上强强的M-估计框架,以估计来自噪音线性测量的未知参数,我们侧重于分析此类估计者平方差错性表现的重要而具有挑战性的任务。我们的研究是在现代高维比例制度下进行的,环境层面和样本数量都具有无限性,其比例率将问题下/过度对齐。在偏移高斯的特征假设下,我们表明,正方差可以恢复为对等相最优化问题的解决方案,而这种问题,在最明显的四个高度比例比例比例上涉及我们最可靠的研究。