In this paper, we propose an augmented subspace based adaptive proper orthogonal decomposition (POD) method for solving the time dependent partial differential equations. By augmenting the POD subspace with some auxiliary modes, we obtain an augmented subspace. We use the difference between the approximation obtained in this augmented subspace and that obtained in the original POD subspace to construct an error indicator, by which we obtain a general framework for augmented subspace based adaptive POD method. We then provide two strategies to obtain some specific augmented subspaces, the random vector based augmented subspace and the coarse-grid approximations based augmented subspace. We apply our new method to two typical 3D advection-diffusion equations with the advection being the Kolmogorov flow and the ABC flow. Numerical results show that our method is more efficient than the existing adaptive POD methods, especially for the advection dominated models.
翻译:本文提出了一种基于增广子空间的自适应适当正交分解(POD)方法,用于求解时间相关偏微分方程。通过将POD子空间与一些辅助模式结合,我们获得了一个增广子空间。我们使用该增广子空间中得到的逼近值和原始POD子空间中得到的逼近值之间的差异构造一个误差指标,由此获得了基于增广子空间的自适应POD方法的一般框架。然后提供了两种策略来获取特定的增广子空间,包括基于随机矢量的增广子空间和基于粗网格逼近的增广子空间。将新方法应用于两个具有代表性的三维对流-扩散方程中,其中对流为Kolmogorov流和ABC流。数值结果表明,我们的方法比现有的自适应POD方法更有效,尤其适用于对流占主导的模型。