Current graph neural network (GNN) architectures naively average or sum node embeddings into an aggregated graph representation -- potentially losing structural or semantic information. We here introduce OT-GNN, a model that computes graph embeddings using parametric prototypes that highlight key facets of different graph aspects. Towards this goal, we successfully combine optimal transport (OT) with parametric graph models. Graph representations are obtained from Wasserstein distances between the set of GNN node embeddings and ``prototype'' point clouds as free parameters. We theoretically prove that, unlike traditional sum aggregation, our function class on point clouds satisfies a fundamental universal approximation theorem. Empirically, we address an inherent collapse optimization issue by proposing a noise contrastive regularizer to steer the model towards truly exploiting the OT geometry. Finally, we outperform popular methods on several molecular property prediction tasks, while exhibiting smoother graph representations.


翻译:目前的图形神经网络(GNN)结构天真的平均或总节点嵌入一个汇总的图形表示中 -- -- 可能会失去结构性或语义信息。 我们在此引入了 OT- GNN, 模型使用突出不同图形方面关键方面的参数原型计算图形嵌入。 为了实现这一目标, 我们成功地将最佳迁移( OT) 与参数图形模型结合起来。 图示来自GNN 结点嵌入和“ prototype”点云作为自由参数之间的瓦瑟斯坦距离。 我们理论上证明, 我们的点云上的功能类与传统的总和总和不同, 符合基本的普遍性近似理论。 随机地, 我们解决了固有的崩溃优化问题, 方法是提出一个噪音对比常规化器, 引导模型真正利用 OT 几何模型。 最后, 我们优于几个分子属性预测任务, 同时展示更平滑的图形表达方式。

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
27+阅读 · 2020年6月19日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
27+阅读 · 2020年6月19日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
23+阅读 · 2018年10月1日
Top
微信扫码咨询专知VIP会员