Current graph neural network (GNN) architectures naively average or sum node embeddings into an aggregated graph representation -- potentially losing structural or semantic information. We here introduce OT-GNN, a model that computes graph embeddings using parametric prototypes that highlight key facets of different graph aspects. Towards this goal, we successfully combine optimal transport (OT) with parametric graph models. Graph representations are obtained from Wasserstein distances between the set of GNN node embeddings and ``prototype'' point clouds as free parameters. We theoretically prove that, unlike traditional sum aggregation, our function class on point clouds satisfies a fundamental universal approximation theorem. Empirically, we address an inherent collapse optimization issue by proposing a noise contrastive regularizer to steer the model towards truly exploiting the OT geometry. Finally, we outperform popular methods on several molecular property prediction tasks, while exhibiting smoother graph representations.
翻译:目前的图形神经网络(GNN)结构天真的平均或总节点嵌入一个汇总的图形表示中 -- -- 可能会失去结构性或语义信息。 我们在此引入了 OT- GNN, 模型使用突出不同图形方面关键方面的参数原型计算图形嵌入。 为了实现这一目标, 我们成功地将最佳迁移( OT) 与参数图形模型结合起来。 图示来自GNN 结点嵌入和“ prototype”点云作为自由参数之间的瓦瑟斯坦距离。 我们理论上证明, 我们的点云上的功能类与传统的总和总和不同, 符合基本的普遍性近似理论。 随机地, 我们解决了固有的崩溃优化问题, 方法是提出一个噪音对比常规化器, 引导模型真正利用 OT 几何模型。 最后, 我们优于几个分子属性预测任务, 同时展示更平滑的图形表达方式。