In this paper, we propose a spatial graph convolution (GC) to classify signals on a graph. Existing GC methods are limited to using the structural information in the feature space. Additionally, the single step of GCs only uses features on the one-hop neighboring nodes from the target node. In this paper, we propose two methods to improve the performance of GCs: 1) Utilizing structural information in the feature space, and 2) exploiting the multi-hop information in one GC step. In the first method, we define three structural features in the feature space: feature angle, feature distance, and relational embedding. The second method aggregates the node-wise features of multi-hop neighbors in a GC. Both methods can be simultaneously used. We also propose graph neural networks (GNNs) integrating the proposed GC for classifying nodes in 3D point clouds and citation networks. In experiments, the proposed GNNs exhibited a higher classification accuracy than existing methods.
翻译:在本文中,我们提出一个空间图变迁(GC),用于对图形上的信号进行分类。现有的GC方法仅限于使用特征空间的结构信息。此外,GC的单步步骤只使用目标节点的一切相邻节点上的特征。在本文中,我们提出两种方法来改进GC的性能:1)利用特征空间的结构信息,2)利用多切点信息的一个GC步骤。在第一个方法中,我们定义了特征空间的三个结构特征:特征角度、特征距离和关联嵌入。第二种方法将多切点邻居的节点特征汇总到GC中。两种方法都可以同时使用。我们还提议将3D点云和引言网络中拟建立的图形神经网络(GNN)整合为3D点云和引言网络中的节点分类。在实验中,拟议的GNN显示出比现有方法更高的分类精度。