As a classical and ever reviving topic, change point detection is often formulated as a search for the maximum of a gain function describing improved fits when segmenting the data. Searching through all candidate split points on the grid for finding the best one requires $O(T)$ evaluations of the gain function for an interval with $T$ observations. If each evaluation is computationally demanding (e.g. in high-dimensional models), this can become infeasible. Instead, we propose optimistic search strategies with $O(\log T)$ evaluations exploiting specific structure of the gain function. Towards solid understanding of our strategies, we investigate in detail the classical univariate Gaussian change in mean setup. For some of our proposals we prove asymptotic minimax optimality for single and multiple change point scenarios. Our search strategies generalize far beyond the theoretically analyzed univariate setup. We illustrate, as an example, massive computational speedup in change point detection for high-dimensional Gaussian graphical models. More generally, we demonstrate empirically that our optimistic search methods lead to competitive estimation performance while heavily reducing run-time.
翻译:作为古典和不断恢复的话题,变化点探测往往被设计成寻找最大增益功能的搜索,描述数据分割时更适合的增益功能。在网格上搜索所有候选的分点以寻找最佳的分点,需要用美元(T)来对增益函数进行间隔评估。如果每次评估都具有计算要求(例如高维模型),则可能变得不可行。相反,我们提出乐观的搜索战略,用美元(log T)来评估增益功能的具体结构。为了对我们的策略有扎实的理解,我们详细调查典型的单向高斯在平均设置上的变动。对于我们的一些提案,我们证明单向单一和多重变动点假设的微缩性最佳性。我们的搜索战略超越了理论分析的单维雅模型。我们举例地说明,在高维的图形模型的改变点探测中,大规模计算速度。我们从经验上表明,我们乐观的搜索方法导致竞争性估计业绩,同时大量减少运行时间。