In the framework of abstract linear inverse problems in infinite-dimensional Hilbert space we discuss generic convergence behaviours of approximate solutions determined by means of general projection methods, namely outside the standard assumptions of Petrov-Galerkin truncation schemes. This includes a discussion of the mechanisms why the error or the residual generically fail to vanish in norm, and the identification of practically plausible sufficient conditions for such indicators to be small in some weaker sense. The presentation is based on theoretical results together with a series of model examples and numerical tests.
翻译:在无限维度希尔伯特空间的抽象线性反向问题的框架内,我们讨论了通过一般预测方法,即在Petrov-Galerkin截断计划标准假设之外,确定近似解决办法的一般趋同行为,其中包括讨论错误或剩余现象一般不能在正常情况下消失的各种机制,以及查明实际上可行的足够条件,使这些指标在某种较弱的意义上小一些。