Traditional orthogonal range problems allow queries over a static set of points, each with some value. Dynamic variants allow points to be added or removed, one at a time. To support more powerful updates, we introduce the Grid Range class of data structure problems over integer arrays in one or more dimensions. These problems allow range updates (such as filling all cells in a range with a constant) and queries (such as finding the sum or maximum of values in a range). In this work, we consider these operations along with updates that replace each cell in a range with the minimum, maximum, or sum of its existing value, and a constant. In one dimension, it is known that segment trees can be leveraged to facilitate any $n$ of these operations in $\tilde{O}(n)$ time overall. Other than a few specific cases, until now, higher dimensional variants have been largely unexplored. We show that no truly subquadratic time algorithm can support certain pairs of these updates simultaneously without falsifying several popular conjectures. On the positive side, we show that truly subquadratic algorithms can be obtained for variants induced by other subsets. We provide two approaches to designing such algorithms that can be generalised to online and higher dimensional settings. First, we give almost-tight $\tilde{O}(n^{3/2})$ time algorithms for single-update variants where the update operation distributes over the query operation. Second, for other variants, we provide a general framework for reducing to instances with a special geometry. Using this, we show that $O(m^{3/2-\epsilon})$ time algorithms for counting paths and walks of length 2 and 3 between vertex pairs in sparse graphs imply truly subquadratic data structures for certain variants; to this end, we give an $\tilde{O}(m^{(4\omega-1)/(2\omega+1)}) = O(m^{1.478})$ time algorithm for counting simple 3-paths between vertex pairs.


翻译:传统或线性范围问题允许对固定的一组点进行查询, 每个点都有一定的值。 动态变量允许一次添加或删除点 。 为了支持更强大的更新, 我们在一个或更多维度中引入了数据结构对整数阵列问题的网格区域类别 。 这些问题允许范围更新( 例如用一个常数填满所有单元格) 和查询( 比如在范围中找到数值的总和或最大值 ) 。 在这项工作中, 我们考虑这些操作, 同时更新每个单元格, 以最小、 最大或现有值和恒值来替换 。 在一个维度中, 部分运行可以被利用来为这些操作中的任何 $\ talde{ (n) 。 除了少数特定案例, 直到现在, 更高的维度变量基本上还没有被解析 。 我们显示, 某些亚性的时间算法可以同时支持这些更新中的某对配方, 而不用几个通俗的调数框架 。 在正的一面上, 我们显示, 真正的亚化时间算算法将我们用来在第二个变数中, 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】算法C语言实现,Algorithms in C. 672页pdf
专知会员服务
81+阅读 · 2020年8月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月3日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员