This paper describes and compares several prominent single and multiple changepoint techniques for time series data. Due to their importance in inferential matters, changepoint research on correlated data has accelerated recently. Unfortunately, small perturbations in model assumptions can drastically alter changepoint conclusions; for example, heavy positive correlation in a time series can be misattributed to a mean shift should correlation be ignored. This paper considers both single and multiple changepoint techniques. The paper begins by examining cumulative sum (CUSUM) and likelihood ratio tests and their variants for the single changepoint problem; here, various statistics, boundary cropping scenarios, and scaling methods (e.g., scaling to an extreme value or Brownian Bridge limit) are compared. A recently developed test based on summing squared CUSUM statistics over all times is shown to have realistic Type I errors and superior detection power. The paper then turns to the multiple changepoint setting. Here, penalized likelihoods drive the discourse, with AIC, BIC, mBIC, and MDL penalties being considered. Binary and wild binary segmentation techniques are also compared. We introduce a new distance metric specifically designed to compare two multiple changepoint segmentations. Algorithmic and computational concerns are discussed and simulations are provided to support all conclusions. In the end, the multiple changepoint setting admits no clear methodological winner, performance depending on the particular scenario. Nonetheless, some practical guidance will emerge.


翻译:本文描述并比较了时间序列数据的若干突出的单一和多重变化点技术。 由于其在推论事项中的重要性, 相关数据的变化点研究最近加快了。 不幸的是, 模型假设中的小扰动可能大大改变变化点结论; 例如, 一个时间序列中的重正相关可能误认为一种中度变化, 应该忽略它。 本文既考虑单一变化点技术, 也考虑多个变化点技术。 本文首先研究累积总和( CUUUM) 和可能性比率测试, 以及单一变化点问题的变量; 这里比较了各种统计数据、 边界裁剪裁假设和比例缩放方法( 例如, 缩到极端值或布朗氏桥底限) 。 最近开发的基于平方CUSUM统计数据的测试可以极大地改变变化点结论; 最近开发的测试显示, 一个基于平方形 CUSUM统计数据的所有时间都有现实型错误和超强检测力。 本文随后转向多个变化点设置。 这里, 受罚的可能性驱动着讨论的话题, 包括 AIC、 BIC、 mBIC、 mBIC 和 MDL 和 MDL 惩罚。 这里还比较了一些 边和野二进分法 。 我们引入了新的距离测量 具体用来比较了两个不同的模拟模型 。 。 。 。 将分析 选择了 选择了 。, 选择了不同的 选择了 和 。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
已删除
将门创投
10+阅读 · 2018年5月2日
Arxiv
0+阅读 · 2021年3月2日
Arxiv
14+阅读 · 2020年12月17日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
已删除
将门创投
10+阅读 · 2018年5月2日
Top
微信扫码咨询专知VIP会员