Motivated by surprisingly good generalization properties of learned deep neural networks in overparameterized scenarios and by the related double descent phenomenon, this paper analyzes the relation between smoothness and low generalization error in an overparameterized linear learning problem. We study a random Fourier series model, where the task is to estimate the unknown Fourier coefficients from equidistant samples. We derive exact expressions for the generalization error of both plain and weighted least squares estimators. We show precisely how a bias towards smooth interpolants, in the form of weighted trigonometric interpolation, can lead to smaller generalization error in the overparameterized regime compared to the underparameterized regime. This provides insight into the power of overparameterization, which is common in modern machine learning.
翻译:本文的动机是,在过度参数化的假设情景中,所学的深心神经网络具有令人惊讶的良好概括性特性,而且相关的双向下移现象,本文件分析了超参数化线性学习问题中平滑和低一般化错误之间的关系。我们研究了一个随机的Fourier系列模型,任务是从等离子样本中估计未知的Fourier系数。我们得出平面和加权最小方位测量器一般化错误的精确表达方式。我们准确地展示了以加权三角内插形式偏向顺畅的中间线,如何导致与低参数化的系统相比,在超参数化制度中出现较小的一般化错误。这为超分法化的力量提供了深入的洞察力,这是现代机器学习中常见的。