Text-to-audio (TTA) generation is a recent popular problem that aims to synthesize general audio given text descriptions. Previous methods utilized latent diffusion models to learn audio embedding in a latent space with text embedding as the condition. However, they ignored the synchronization between audio and visual content in the video, and tended to generate audio mismatching from video frames. In this work, we propose a novel and personalized text-to-sound generation approach with visual alignment based on latent diffusion models, namely DiffAVA, that can simply fine-tune lightweight visual-text alignment modules with frozen modality-specific encoders to update visual-aligned text embeddings as the condition. Specifically, our DiffAVA leverages a multi-head attention transformer to aggregate temporal information from video features, and a dual multi-modal residual network to fuse temporal visual representations with text embeddings. Then, a contrastive learning objective is applied to match visual-aligned text embeddings with audio features. Experimental results on the AudioCaps dataset demonstrate that the proposed DiffAVA can achieve competitive performance on visual-aligned text-to-audio generation.
翻译:暂无翻译