The detection of tiny objects in microscopic videos is a problematic point, especially in large-scale experiments. For tiny objects (such as sperms) in microscopic videos, current detection methods face challenges in fuzzy, irregular, and precise positioning of objects. In contrast, we present a convolutional neural network for tiny object detection (TOD-CNN) with an underlying data set of high-quality sperm microscopic videos (111 videos, $>$ 278,000 annotated objects), and a graphical user interface (GUI) is designed to employ and test the proposed model effectively. TOD-CNN is highly accurate, achieving $85.60\%$ AP$_{50}$ in the task of real-time sperm detection in microscopic videos. To demonstrate the importance of sperm detection technology in sperm quality analysis, we carry out relevant sperm quality evaluation metrics and compare them with the diagnosis results from medical doctors.
翻译:微型视频中小物体的探测是一个问题,特别是在大型实验中。对于微型视频中的小物体(如精子)来说,目前的探测方法在模糊、不定期和精确定位物体方面面临着挑战。相比之下,我们展示了一个小物体探测的进化神经网络(TOD-CNN),其中包含一套高质量的精子显微视频(111个视频,大于278,000美元附加说明对象)的基本数据,并设计了一个图形用户界面(GUI),以便有效地使用和测试拟议的模型。TOD-CNN非常精确,在微型视频中实时探测精子的任务中达到85.60美元AP$50美元。为了证明精子探测技术在精子质量分析中的重要性,我们进行了相关的精子质量评估指标,并将其与医生的诊断结果进行比较。