In this article we introduce a new family of lattice polytopes with rational linear precision. For this purpose, we define a new class of discrete statistical models that we call multinomial staged tree models. We prove that these models have rational maximum likelihood estimators (MLE) and give a criterion for these models to be log-linear. Our main result is then obtained by applying Garcia-Puente and Sottile's theorem that establishes a correspondence between polytopes with rational linear precision and log-linear models with rational MLE. Throughout this article we also study the interplay between the primitive collections of the normal fan of a polytope with rational linear precision and the shape of the Horn matrix of its corresponding statistical model. Finally, we investigate lattice polytopes arising from toric multinomial staged tree models, in terms of the combinatorics of their tree representations.
翻译:在此篇文章中, 我们引入了一个具有理性线性精度的 lattice 聚顶形新组合。 为此, 我们定义了一种新的离散统计模型类别, 我们称之为多线性分层树模型。 我们证明这些模型具有合理的最大概率估计值( MLE ), 并给出了这些模型的日志线性标准。 我们的主要结果通过应用 Garcia- Puente 和 Sottille 的理论来获得, 从而在具有理性线性精确度的多面形和具有理性 MLE 的对线性模型之间建立起对应。 在整个文章中, 我们还研究了具有理性线性精度的多扇形的原始原始收藏及其相应统计模型的非洲之角矩阵形状之间的相互作用。 最后, 我们从树形多线性多线性树模型的组合式模型中, 以其树形结构的交织法来调查 。