项目名称: 近红外荧光磁性多功能纳米粒子的精密合成

项目编号: No.21274100

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 程振平

作者单位: 苏州大学

项目金额: 80万元

中文摘要: 近红外区(700-900 nm)是生物体的荧光空白区,利用这个空白区可以避开生物体自身荧光发射所造成的背景干扰获得处于生物体5-12 cm深处的在体分子荧光影像,结合磁性纳米粒子的三维磁共振成像技术,借助解剖学和荧光分子的同时定位得到更多有用的诊断和治疗信息。本项目旨在采用活性自由基聚合(ATRP和RAFT)方法,把具有近红外荧光性能和水溶性单体可控接枝到二氧化硅层保护的磁性四氧化三铁纳米粒子上,同时通过基团反应把靶向基团固定于纳米粒子上,建立集靶向、近红外荧光和磁性能于一体并可稳定分散在水性环境中的多功能纳米粒子精密合成方法。掌握磁性纳米粒子大小、包裹的二氧化硅保护层厚度、近红外荧光单体种类、接枝的荧光聚合物及亲水聚合物层厚度以及聚合物结构等对多功能纳米粒子荧光和磁性能的影响规律,同时为在体生物成像技术提供一种集近红外荧光、磁性和靶向性能于一体的核壳结构的多功能无机/有机杂化纳米新材料。

中文关键词: 纳米粒子;近红外荧光;磁性;多功能;精密合成

英文摘要: Near-infrared (NIR) with the wavelength in the range between 700 and 900 nm, also known as "spectra window", is an uncovered region of self-emission fluorescence for biosomes. Therefore, a clear fluorescece imaging 5-12 cm deep into the tissue can be observed within this range avoiding the interfere arising from the organsims (background) itself. By combination with the technique of magnetic resonance imaging (MRI), which owns high spatial resolution, guaranteed by magnetic nanoparticles, we can obtain much more valuable information for both diagnosis and treatment through simultaneous application of such two means. We in turn plan to empoly "living" radical polymerization (ATRP and RAFT) to modify the silica coated ferriferrous oxide (Fe3O4@SiO2) with controlled (co)polymer layers which possess propertis of NIR fluorescence and hydrophilicity. Apart from that, some specific targeting molecules can also be fixed on the nanoparticles through certain end-group reactions; accordingly a facile synthetic strategy to prepare multifunctional nanoparticles with characteristics of specific targeting, NIR fluorescence, magnetism and good dispersibility in aqueous media can be established. The effects of numerous factors including the size of the magnetic core, the thickness of the silica shell, types of the NIR monomer as

英文关键词: Nanoparticles;near-infrared fluorescence;magnetism;multifunction;precision synthesis

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
25+阅读 · 2021年4月2日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
iMac Pro 今年一季度将卷土重来?
ZEALER订阅号
0+阅读 · 2022年1月12日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
15+阅读 · 2020年2月6日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
25+阅读 · 2021年4月2日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
iMac Pro 今年一季度将卷土重来?
ZEALER订阅号
0+阅读 · 2022年1月12日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员