In this paper, we propose a new dense retrieval model which learns diverse document representations with deep query interactions. Our model encodes each document with a set of generated pseudo-queries to get query-informed, multi-view document representations. It not only enjoys high inference efficiency like the vanilla dual-encoder models, but also enables deep query-document interactions in document encoding and provides multi-faceted representations to better match different queries. Experiments on several benchmarks demonstrate the effectiveness of the proposed method, out-performing strong dual encoder baselines.The code is available at \url{https://github.com/jordane95/dual-cross-encoder
翻译:在本文中,我们提出了一个新的密集检索模型,该模型学习了不同文件的表达方式,并具有深层次的查询互动。我们的模型将每份文件编码成一套生成的伪查询器,以获得查询信息、多视角的文件表述方式。它不仅像香草双编码模型一样具有很高的推断效率,而且还能够在文件编码中进行深入的查询文件互动,并提供多面的表达方式,以更好地匹配不同的查询。关于若干基准的实验显示了拟议方法的有效性,超强的双重编码器基线。该代码可在\url{https://github.com/jordane95/dual-cross-encoder查阅。