The text retrieval task is mainly performed in two ways: the bi-encoder approach and the generative approach. The bi-encoder approach maps the document and query embeddings to common vector space and performs a nearest neighbor search. It stably shows high performance and efficiency across different domains but has an embedding space bottleneck as it interacts in L2 or inner product space. The generative retrieval model retrieves by generating a target sequence and overcomes the embedding space bottleneck by interacting in the parametric space. However, it fails to retrieve the information it has not seen during the training process as it depends solely on the information encoded in its own model parameters. To leverage the advantages of both approaches, we propose Contextualized Generative Retrieval model, which uses contextualized embeddings (output embeddings of a language model encoder) as vocab embeddings at the decoding step of generative retrieval. The model uses information encoded in both the non-parametric space of contextualized token embeddings and the parametric space of the generative retrieval model. Our approach of generative retrieval with contextualized vocab embeddings shows higher performance than generative retrieval with only vanilla vocab embeddings in the document retrieval task, an average of 6% higher performance in KILT (NQ, TQA) and 2X higher in NQ-320k, suggesting the benefits of using contextualized embedding in generative retrieval models.


翻译:文本检索任务主要以两种方式执行:双编码方法和基因化方法。双编码方法将文档和查询嵌入到共同矢量空间并进行近邻搜索。它精确地显示不同领域的高性能和效率,但在L2或内部产品空间互动时有一个嵌入的空间瓶颈。基因检索模型通过生成目标序列和在参数空间互动克服嵌入空间瓶颈来检索。但是,它未能检索在培训过程中没有看到的信息,因为它完全取决于在其自身模型参数参数中编码的信息。为了利用这两种方法的优势,我们提议了“内化”的生成检索模型,该模型在L2 或内部产品空间进行互动时使用了“内嵌入式”(语言模型的外嵌入),作为在基因化检索的分解分解步骤中嵌入“内嵌入”。该模型使用非对本地化的标识嵌入空间和6个基因化的修复空间来进行编码。我们使用“内嵌入”的“内嵌入”方法,仅用“内嵌入”的“内嵌入”工具,只用“内嵌入”的“内嵌入”的“内嵌入”方式,只显示“内存”中的“内存”的“内存”二号”。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年11月27日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员