Learning to search is the task of building artificial agents that learn to autonomously use a search box to find information. So far, it has been shown that current language models can learn symbolic query reformulation policies, in combination with traditional term-based retrieval, but fall short of outperforming neural retrievers. We extend the previous learning to search setup to a hybrid environment, which accepts discrete query refinement operations, after a first-pass retrieval step performed by a dual encoder. Experiments on the BEIR task show that search agents, trained via behavioral cloning, outperform the underlying search system based on a combined dual encoder retriever and cross encoder reranker. Furthermore, we find that simple heuristic Hybrid Retrieval Environments (HRE) can improve baseline performance by several nDCG points. The search agent based on HRE (HARE) produces state-of-the-art performance on both zero-shot and in-domain evaluations. We carry out an extensive qualitative analysis to shed light on the agents policies.
翻译:学习搜索是建设人工代理物的任务,这些代理物学会自主地使用搜索框来查找信息。到目前为止,已经证明当前语言模型可以学习象征性的查询重整政策,同时采用传统的基于术语的检索方法,但还不能使用超能神经检索器。我们把先前的搜索学习扩展至混合环境,在由双编码器进行第一通道检索步骤后,该混合环境接受离散的查询精细操作。BEIR任务实验显示,通过行为克隆培训的搜索代理物超越基于双编码检索器和交叉编码重置器的原始搜索系统。此外,我们发现简单的超光速混合回收环境(HRE)可以改善几个 nDCG点的基线性能。基于HRE(HAE)的搜索代理物在零点和实地评估上都产生最新水平的性能。我们进行了广泛的定性分析,以阐明代理物的政策。