IQUAFLOW is a new image quality framework that provides a set of tools to assess image quality. The user can add custom metrics that can be easily integrated. Furthermore, iquaflow allows to measure quality by using the performance of AI models trained on the images as a proxy. This also helps to easily make studies of performance degradation of several modifications of the original dataset, for instance, with images reconstructed after different levels of lossy compression; satellite images would be a use case example, since they are commonly compressed before downloading to the ground. In this situation, the optimization problem consists in finding the smallest images that provide yet sufficient quality to meet the required performance of the deep learning algorithms. Thus, a study with iquaflow is suitable for such case. All this development is wrapped in Mlflow: an interactive tool used to visualize and summarize the results. This document describes different use cases and provides links to their respective repositories. To ease the creation of new studies, we include a cookie-cutter repository. The source code, issue tracker and aforementioned repositories are all hosted on GitHub https://github.com/satellogic/iquaflow.
翻译:IQUAFLOW 是一个新的图像质量框架, 它为评估图像质量提供了一套工具。 用户可以添加易于整合的自定义量度。 此外, iquarplow 能够通过使用在图像上受过训练的AI 模型的性能来测量质量。 这也有助于对原始数据集的若干修改的性能退化进行研究, 例如, 图像在不同程度的损耗压缩后重建; 卫星图像将是一个有用的案例, 因为通常在下载到地面之前就被压缩。 在此情况下, 优化的问题在于找到最小的图像, 其质量仍然足以满足深层学习算法所要求的性能。 因此, 以 iqualflow 进行的一项研究适合这种情况。 所有这些开发都以 Mlflow 包扎起来: 用于视觉化和总结结果的交互式工具。 此文件描述了不同的使用案例, 并提供与各自仓库的链接。 为方便创建新研究, 我们包含一个 cookie- cutter 仓库。 源码、 问题追踪器和上述存储器都存放在 GitHub https:// giththub. com/ satelog/ satelogic/ qualpropplow.