Non-additive measures, also known as fuzzy measures, capacities, and monotonic games, are increasingly used in different fields. Applications have been built within computer science and artificial intelligence related to e.g. decision making, image processing, machine learning for both classification, and regression. Tools for measure identification have been built. In short, as non-additive measures are more general than additive ones (i.e., than probabilities), they have better modeling capabilities allowing to model situations and problems that cannot be modeled by the latter. See e.g. the application of non-additive measures and the Choquet integral to model both Ellsberg paradox and Allais paradox. Because of that, there is an increasing need to analyze non-additive measures. The need for distances and similarities to compare them is no exception. Some work has been done for defining $f$-divergence for them. In this work we tackle the problem of defining the optimal transport problem for non-additive measures. Distances for pairs of probability distributions based on the optimal transport are extremely used in practical applications, and they are being studied extensively for their mathematical properties. We consider that it is necessary to provide appropriate definitions with a similar flavour, and that generalize the standard ones, for non-additive measures. We provide definitions based on the M\"obius transform, but also based on the $(\max, +)$-transform that we consider that has some advantages. We will discuss in this paper the problems that arise to define the transport problem for non-additive measures, and discuss ways to solve them. In this paper we provide the definitions of the optimal transport problem, and prove some properties.


翻译:不增加的措施,也称为模糊的措施、能力和单调游戏,越来越多地在不同领域使用。应用程序是在计算机科学和人工智能中建立的,涉及决策、图像处理、机器学习、分类和回归。测量识别工具已经建立。简言之,由于非增加措施比添加措施(即概率)更为一般化,它们具有更好的建模能力,可以模拟无法由后者模拟的情况和问题。例如,应用非增加措施和Choquet作为Elsberg悖论和Allais悖论的模型。因此,越来越需要分析非增加措施。需要距离和相似性来比较它们,没有例外。有些非增加措施比添加措施(即概率)更加普通化。在这项工作中,我们解决了非增加措施中的最佳运输问题。在优化运输过程中,我们用概率分配的距离,但是在实际应用中非常使用Choquet。因此,我们正在广泛研究非增加措施的变压性定义。我们用这种变压性定义来解释,我们用这种变压性的方法来解释。我们用这种变压性定义来解释。我们用这种变压式的方法来解释这些变压式的特性,我们用它的基础是用来解释。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月10日
Arxiv
0+阅读 · 2023年2月9日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员