In this paper we consider the $2$-Dimensional Vector Bin Packing Problem (2VBP), a well-studied generalization of classic Bin Packing that is widely applicable in resource allocation and scheduling. In 2VBP we are given a set of items, where each item is associated with a two-dimensional volume vector. The objective is to partition the items into a minimal number of subsets (bins), such that the total volume of items in each subset is at most $1$ in each dimension. We give an asymptotic $\left(\frac{4}{3}+\varepsilon\right)$-approximation for the problem, thus improving upon the best known asymptotic ratio of $\left(1+\ln \frac{3}{2}+\varepsilon\right)\approx 1.406$ due to Bansal, Elias and Khan (SODA 2016). Our algorithm applies a novel Round&Round approach which iteratively solves a configuration LP relaxation for the residual instance (from previous iterations) and samples a small number of configurations based on the solution for the configuration LP. For the analysis we derive an iteration-dependent upper bound on the solution size for the configuration LP, which holds with high probability. We also show that our Round&Round approach yields an AFPTAS for classic Bin Packing, suggesting its potential applicability for other variants of Bin Packing.
翻译:在本文中,我们考虑的是2美元差异矢量包装问题(2VBPP),这是在资源分配和日程安排中广泛适用的典型的典型的Bin包装(Bin包装)的经充分研究的通用。在 2VBP 中,我们得到了一套项目,其中每个项目都与二维体积矢量矢量矢量矢量矢量矢量矢量矢量,目标是将每个子集的物品分解成最小数量子集(bin),这样每个子集的物品总量在每个维度上最多为$1美元。我们给出了一个对问题进行广泛应用的经典Bin包装(frac{4 ⁇ 3 ⁇ 3 ⁇ vävarepsilon\right)的简略理解,从而改进了已知的最佳的 $left(lft) (1 ⁇ lnln =3 ⁇ 2 ⁇ ⁇ varepsilon\right) 组合比重的一组。我们使用的算法采用了一种新的圆和圆和圆法方法,它反复地解决了(从先前的重复) 的LP 放松的配置,并抽样了它的一个小的精确配置,用来提出一个用于我们高的配置。