In this paper we consider the $2$-Dimensional Vector Bin Packing Problem (2VBP), a well-studied generalization of classic Bin Packing that is widely applicable in resource allocation and scheduling. In 2VBP we are given a set of items, where each item is associated with a two-dimensional volume vector. The objective is to partition the items into a minimal number of subsets (bins), such that the total volume of items in each subset is at most $1$ in each dimension. We give an asymptotic $\left(\frac{4}{3}+\varepsilon\right)$-approximation for the problem, thus improving upon the best known asymptotic ratio of $\left(1+\ln \frac{3}{2}+\varepsilon\right)\approx 1.406$ due to Bansal, Elias and Khan (SODA 2016). Our algorithm applies a novel Round&Round approach which iteratively solves a configuration LP relaxation for the residual instance (from previous iterations) and samples a small number of configurations based on the solution for the configuration LP. For the analysis we derive an iteration-dependent upper bound on the solution size for the configuration LP, which holds with high probability. We also show that our Round&Round approach yields an AFPTAS for classic Bin Packing, suggesting its potential applicability for other variants of Bin Packing.


翻译:在本文中,我们考虑的是2美元差异矢量包装问题(2VBPP),这是在资源分配和日程安排中广泛适用的典型的典型的Bin包装(Bin包装)的经充分研究的通用。在 2VBP 中,我们得到了一套项目,其中每个项目都与二维体积矢量矢量矢量矢量矢量矢量矢量矢量,目标是将每个子集的物品分解成最小数量子集(bin),这样每个子集的物品总量在每个维度上最多为$1美元。我们给出了一个对问题进行广泛应用的经典Bin包装(frac{4 ⁇ 3 ⁇ 3 ⁇ vävarepsilon\right)的简略理解,从而改进了已知的最佳的 $left(lft) (1 ⁇ lnln =3 ⁇ 2 ⁇ ⁇ varepsilon\right) 组合比重的一组。我们使用的算法采用了一种新的圆和圆和圆法方法,它反复地解决了(从先前的重复) 的LP 放松的配置,并抽样了它的一个小的精确配置,用来提出一个用于我们高的配置。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月4日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员