This paper investigates the problem of synthesizing proactive defense systems in which the defender can allocate deceptive targets and modify the cost of actions for the attacker who aims to compromise security assets in this system. We model the interaction of the attacker and the system using a formal security model -- a probabilistic attack graph. By allocating fake targets/decoys, the defender aims to distract the attacker from compromising true targets. By increasing the cost of some attack actions, the defender aims to discourage the attacker from committing to certain policies and thereby improve the defense. To optimize the defense given limited decoy resources and operational constraints, we formulate the synthesis problem as a bi-level optimization problem, while the defender designs the system, in anticipation of the attacker's best response given that the attacker has disinformation about the system due to the use of deception. Though the general formulation with bi-level optimization is NP-hard, we show that under certain assumptions, the problem can be transformed into a constrained optimization problem. We proposed an algorithm to approximately solve this constrained optimization problem using a novel incentive-design method for projected gradient ascent. We demonstrate the effectiveness of the proposed method using extensive numerical experiments.
翻译:本文调查了将主动防御系统综合起来的问题, 维权者可以在其中分配欺骗性目标, 并修改攻击者的行动成本。 我们用一个正式的安全模型来模拟攻击者与系统的互动 -- -- 概率攻击图。 维权者通过分配假目标/ 诱饵, 目的是分散攻击者对真实目标的损害。 维权者通过增加某些攻击行动的成本, 目的是阻止攻击者承诺某些政策, 从而改进防御。 为了在有限的诱饵资源和操作限制下优化防御, 我们将综合问题发展为双级优化问题, 而维权者设计这个系统, 以预设攻击者的最佳反应, 因为攻击者因使用欺骗手段而隐瞒了对系统的信息。 虽然双级优化的一般提法是硬的, 我们表明在某些假设下, 问题可以转化为一个有限的优化问题。 我们建议一种算法, 以新的激励设计方法来解决这个受限制的优化问题, 以预测的梯度为中心。 我们展示了拟议方法的有效性 。