Random reshuffling, which randomly permutes the dataset each epoch, is widely adopted in model training because it yields faster convergence than with-replacement sampling. Recent studies indicate greedily chosen data orderings can further speed up convergence empirically, at the cost of using more computation and memory. However, greedy ordering lacks theoretical justification and has limited utility due to its non-trivial memory and computation overhead. In this paper, we first formulate an example-ordering framework named herding and answer affirmatively that SGD with herding converges at the rate $O(T^{-2/3})$ on smooth, non-convex objectives, faster than the $O(n^{1/3}T^{-2/3})$ obtained by random reshuffling, where $n$ denotes the number of data points and $T$ denotes the total number of iterations. To reduce the memory overhead, we leverage discrepancy minimization theory to propose an online Gradient Balancing algorithm (GraB) that enjoys the same rate as herding, while reducing the memory usage from $O(nd)$ to just $O(d)$ and computation from $O(n^2)$ to $O(n)$, where $d$ denotes the model dimension. We show empirically on applications including MNIST, CIFAR10, WikiText and GLUE that GraB can outperform random reshuffling in terms of both training and validation performance, and even outperform state-of-the-art greedy ordering while reducing memory usage over $100\times$.


翻译:随机重整随机地将每个时代的数据集混合在一起,在模型培训中被广泛采用,因为它比更替的抽样抽样更能产生更快的趋同率。最近的研究显示,贪婪选择的数据定购可以以更多的计算和记忆成本,以经验方式进一步加速趋同。然而,贪婪的定购缺乏理论依据,并且由于它的非边际内存和计算间接费用,其效用有限。在本文中,我们首先设计了一个名为“放牧”的例序式框架,并肯定地回答,SGD和SGD在顺畅、非互换目标上以美元为单位,比通过随机重整获得的美元(n_1/3}T ⁇ 2/3})更快。在随机重整中获得的美元中,贪婪定的定购单价缺乏数据点数和计算总成本。为了减少记忆管理费,我们利用差异最小化的理论来提议一种与缓冲的在线快速调控算法(GRAB),同时将记忆使用率从$(n_美元)降低成本的记忆使用率,在O值中,在O值上显示业绩,在O-ral-deal-deal-deal-deal-al-lexxxxxy 上,同时显示,在Oxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月28日
Arxiv
0+阅读 · 2023年2月28日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员