This work proposes a suite of numerical techniques to facilitate the design of structure-preserving integrators for nonlinear dynamics. The celebrated LaBudde-Greenspan integrator and various energy-momentum schemes adopt a difference quotient formula in their algorithmic force definitions, which suffers from numerical instability as the denominator gets close to zero. There is a need to develop structure-preserving integrators without invoking the quotient formula. In this work, the potential energy of a Hamiltonian system is split into two parts, and specially developed quadrature rules are applied separately to them. The resulting integrators can be regarded as classical ones perturbed with first- or second-order terms, and the energy split guarantees the dissipative nature in the numerical residual. In the meantime, the conservation of invariants is respected in the design. A complete analysis of the proposed integrators is given, with representative numerical examples provided to demonstrate their performance. They can be used either independently as energy-decaying and momentum-conserving schemes for nonlinear problems or as an alternate option with a conserving integrator, such as the LaBudde-Greenspan integrator, when the numerical instability in the difference quotient is detected.
翻译:这项工作提出了一套数字技术, 以方便设计结构保存非线性动态的集成器。 著名的 LaBudde- Greenspan 集成器和各种能量运动计划在其算法力定义中采用不同的商数公式, 当分母接近零时会受到数字不稳定的影响。 需要开发结构保存集成器, 而不引用商数公式 。 在这项工作中, 汉密尔顿系统的潜在能量被分成两部分, 并且对它们分别适用特别开发的二次规则 。 由此形成的集成器可以被视为具有一级或二级条件的典型的饱和器和器, 并且能源分裂能保证数字剩余物的分解性质。 与此同时, 设计中尊重对变量的保存。 对拟议的集成器进行全面分析, 并提供具有代表性的数字示例来显示其性能。 它们可以独立地用作非线性能源淡化和动力调节方案, 或者作为替代选项, 在测量气压变异性时, 气压是测量的, 气压变异变。