Many games are reliant on creating new and engaging content constantly to maintain the interest of their player-base. One such example are puzzle games, in such it is common to have a recurrent need to create new puzzles. Creating new puzzles requires guaranteeing that they are solvable and interesting to players, both of which require significant time from the designers. Automatic validation of puzzles provides designers with a significant time saving and potential boost in quality. Automation allows puzzle designers to estimate different properties, increase the variety of constraints, and even personalize puzzles to specific players. Puzzles often have a large design space, which renders exhaustive search approaches infeasible, if they require significant time. Specifically, those puzzles can be formulated as quadratic combinatorial optimization problems. This paper presents an evolutionary algorithm, empowered by expert-knowledge informed heuristics, for solving logical puzzles in video games efficiently, leading to a more efficient design process. We discuss multiple variations of hybrid genetic approaches for constraint satisfaction problems that allow us to find a diverse set of near-optimal solutions for puzzles. We demonstrate our approach on a fantasy Party Building Puzzle game, and discuss how it can be applied more broadly to other puzzles to guide designers in their creative process.


翻译:许多游戏都依赖于创建新的和不断接触的内容,以保持玩家数据库的兴趣。其中一个例子就是谜题游戏,经常需要创建新的谜题。创建新谜题需要保证对玩家来说是可溶解的和有趣的,两者都需要设计者投入大量时间。谜题的自动验证为设计者提供了大量时间节约和潜在的质量提升。自动化允许解谜设计师估算不同的属性,增加制约的多样性,甚至将谜题个人化到特定的玩家身上。谜题往往有一个巨大的设计空间,如果需要大量时间,让详尽的搜索方法变得不可行。具体地说,这些谜题可以被写成对玩家的二次组合优化问题。本文展示了一种进化的算法,由专家-知识知情的超自然学来增强能力,从而高效地解决视频游戏中的逻辑难题,导致更有效的设计过程。我们讨论了混合基因方法的多种变异性,以制约满意度问题,从而使我们能够找到一套多样的近乎最佳的解谜题方法。我们在幻想方构建游戏的游戏中展示了我们的方法,可以将其应用到更多的解谜游戏中。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月5日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员