This paper investigates deep learning techniques to predict transmit beamforming based on only historical channel data without current channel information in the multiuser multiple-input-single-output downlink. This will significantly reduce the channel estimation overhead and improve the spectrum efficiency especially in high-mobility vehicular communications. Specifically, we propose a joint learning framework that incorporates channel prediction and power optimization, and produces prediction for transmit beamforming directly. In addition, we propose to use the attention mechanism in the Long Short-Term Memory Recurrent Neural Networks to improve the accuracy of channel prediction. Simulation results using both a simple autoregressive process model and the more realistic 3GPP spatial channel model verify that our proposed predictive beamforming scheme can significantly improve the effective spectrum efficiency compared to traditional channel estimation and the method that separately predicts channel and then optimizes beamforming.
翻译:本文对仅根据历史频道数据预测光束成型的深层学习技术进行了调查,这些技术仅基于历史频道数据,而没有多用户多投入-单输出-下链接中的当前频道信息。这将大大减少频道估计管理费,提高频谱效率,特别是高流动性车辆通信的频谱效率。具体地说,我们提议建立一个联合学习框架,纳入频道预测和电力优化,并对传送波束直接进行预测。此外,我们提议利用长期短期内存经常性神经网络中的注意机制,提高频道预测的准确性。使用简单的自动反向进程模型和更现实的3GPP空间频道模型模拟结果,证实我们拟议的预测波段成型计划与传统频道估计和分别预测频道、然后优化波束成的方法相比,能够大大提高有效频谱效率。