We show that the error achievable using physics-informed neural networks for solving systems of differential equations can be substantially reduced when these networks are trained using meta-learned optimization methods rather than to using fixed, hand-crafted optimizers as traditionally done. We choose a learnable optimization method based on a shallow multi-layer perceptron that is meta-trained for specific classes of differential equations. We illustrate meta-trained optimizers for several equations of practical relevance in mathematical physics, including the linear advection equation, Poisson's equation, the Korteweg--de Vries equation and Burgers' equation. We also illustrate that meta-learned optimizers exhibit transfer learning abilities, in that a meta-trained optimizer on one differential equation can also be successfully deployed on another differential equation.
翻译:我们显示,利用物理知情神经网络解决差异方程系统可以实现的错误,如果这些网络通过采用元学习优化方法而不是像以往那样使用固定手工制造的优化器进行培训,那么这些网络就可以大大减少使用物理知情神经网络解决差异方程系统所能实现的错误。我们选择了一种基于浅层多层宽度的可学习优化方法,该方法为特定类别差异方程提供元培训。我们用元培训优化器来说明数学物理学中具有实际相关性的若干方程,包括线性平方程、 Poisson 方程、 Korteweg-de Vries方程和Burgers方程。我们还说明,元学习优化器展示了转移学习能力,因为在一个差异方程上经元培训的优化器也可以成功地在另一个差异方程上部署。</s>