This paper proposes high-order accurate well-balanced (WB) energy stable (ES) adaptive moving mesh finite difference schemes for the shallow water equations (SWEs) with non-flat bottom topography. To enable the construction of the ES schemes on moving meshes, a reformulation of the SWEs is introduced, with the bottom topography as an additional conservative variable that evolves in time. The corresponding energy inequality is derived based on a modified energy function, then the reformulated SWEs and energy inequality are transformed into curvilinear coordinates. A two-point energy conservative (EC) flux is constructed, and high-order EC schemes based on such a flux are proved to be WB that they preserve the lake at rest. Then high-order ES schemes are derived by adding suitable dissipation terms to the EC schemes, which are newly designed to maintain the WB and ES properties simultaneously. The adaptive moving mesh strategy is performed by iteratively solving the Euler-Lagrangian equations of a mesh adaptation functional. The fully-discrete schemes are obtained by using the explicit strong-stability preserving third-order Runge-Kutta method. Several numerical tests are conducted to validate the accuracy, WB and ES properties, shock-capturing ability, and high efficiency of the schemes.


翻译:本文建议,为浅水方程(SWES)建立高度准确平衡(WB)的适应性移动式移动式移动式能源稳定(ES)网状差异方案,采用非负式底表地形;为了能够建造关于移动梅舍的ES计划,将SWES重新推出,将底地地形作为额外的保守变量,并随着时间的推移演变;相应的能源不平等以经修改的能源功能为基础,然后将重订的SWES和能源不平等转换成卷轴坐标;根据这种通量构建了两点的保守(EC)能源通量,并证明基于这种通量的EC高端EC计划是用于在休息时保护湖泊的WB。随后,高端ES计划通过在欧盟委员会计划中添加适当的分散条件加以制定,这些新设计的目的是同时维护WB和ES属性。适应性移动网状网状战略是通过迭接地解决中位适应功能的Euler-Lagrangian方程式。 完全分散的能源保守(EC)通量和基于这种通量的EC计划是利用明确稳健的三阶、Reng-Kut 能力测试和ES-Capal-Custing exprilling expractalal 方法获得的完全分解计划。</s>

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员