One of the central problems in neuroscience is understanding how brain structure relates to function. Naively one can relate the direct connections of white matter fiber tracts between brain regions of interest (ROIs) to the increased co-activation in the same pair of ROIs, but the link between structural and functional connectomes (SCs and FCs) has proven to be much more complex. To learn a realistic generative model characterizing population variation in SCs, FCs, and the SC-FC coupling, we develop a graph auto-encoder that we refer to as Staf-GATE. We trained Staf-GATE with data from the Human Connectome Project (HCP) and show state-of-the-art performance in predicting FC and joint generation of SC and FC. In addition, as a crucial component of the proposed approach, we provide a masking-based algorithm to extract interpretable inference about SC-FC coupling. Our interpretation methods identified important cross-hemisphere and right-hemisphere SC subnetworks for FC coupling and relating SC and FC with cognitive scores and gender.
翻译:神经科学的一个中心问题是了解大脑结构与功能的关系。 神经科学的一个中心问题是了解大脑结构是如何关联的。 神经科学的一个中心问题可以将白物质纤维在受关注的大脑区域(ROIs)之间的白物质纤维块与在同一对ROIs中增加共同活动的直接联系联系起来,但结构与功能连接体(SC和FCs)之间的联系证明要复杂得多。 要学习一个现实的基因化模型,说明在SC、FCs和SC-FC的结合中的人口差异,我们开发了一个图形自动编码器,我们称之为Staf-GATE。 我们用人类连接项目(HCP)的数据对Staf-GATE进行了培训,并展示了在预测FC以及联合生成SC和FC方面的最先进的表现。 此外,作为拟议方法的一个关键组成部分,我们提供了一种基于掩码的算法,以提取可解释的SC-FC的合并的推断。 我们的解释方法确定了重要的跨化学和右化学SC子子网络,与SSC和FC的认知分数和性别有关。