Recent studies proposed the use of Total Correlation to describe functional connectivity among brain regions as a multivariate alternative to conventional pair-wise measures such as correlation or mutual information. In this work we build on this idea to infer a large scale (whole brain) connectivity network based on Total Correlation and show the possibility of using this kind of networks as biomarkers of brain alterations. In particular, this work uses Correlation Explanation (CorEx) to estimate Total Correlation. First, we prove that CorEx estimates of total correlation and clustering results are trustable compared to ground truth values. Second, the inferred large scale connectivity network extracted from the more extensive open fMRI datasets is consistent with existing neuroscience studies but, interestingly, can estimate additional relations beyond pair-wise regions. And finally, we show how the connectivity graphs based on Total Correlation can also be an effective tool to aid in the discovery of brain diseases.
翻译:最近的研究提议使用 " 总体关联 " 来描述大脑区域之间的功能互联互通,作为替代相互关联或相互信息等常规对口措施的一种多种变量。在这项工作中,我们利用这一想法推断出基于总体关联的大规模(整体脑)互联互通网络,并表明利用这种网络作为大脑改变的生物标志的可能性。特别是,这项工作使用 " 总体关联解释 " (CorEx)来估计总体关联。首先,我们证明CorEx对总体关联和组合结果的估计与地面真实值相比是可信赖的。第二,从更为广泛的开放的FMRI数据集中提取的大规模连接网络与现有的神经科学研究一致,但有趣的是,可以估计在双向区域之外的其他关系。最后,我们展示了基于总体关联的连接图如何成为帮助发现脑疾病的有效工具。