The Dirichlet-Neumann scheme is the most common partitioned algorithm for fluid-structure interaction (FSI) and offers high flexibility concerning the solvers employed for the two subproblems. Nevertheless, it is not without shortcomings: to begin with, the inherent added-mass effect often destabilizes the numerical solution severely. Moreover, the Dirichlet-Neumann scheme cannot be applied to FSI problems in which an incompressible fluid is fully enclosed by Dirichlet boundaries, as it is incapable of satisfying the volume constraint. In the last decade, interface quasi-Newton methods have proven to control the added-mass effect and substantially speed up convergence by adding a Newton-like update step to the Dirichlet-Neumann coupling. They are, however, without effect on the incompressibility dilemma. As an alternative, the Robin-Neumann scheme generalizes the fluid's boundary condition to a Robin condition by including the Cauchy stresses. While this modification in fact successfully tackles both drawbacks of the Dirichlet-Neumann approach, the price to be paid is a strong dependency on the Robin weighting parameter, with very limited a priori knowledge about good choices. This work proposes a strategy to merge these two ideas and benefit from their combined strengths. The resulting quasi-Newton-accelerated Robin-Neumann scheme is compared to both Robin- and Dirichlet-Neumann variants. The numerical tests demonstrate that it does not only provide faster convergence, but also massively reduces the influence of the Robin parameter, mitigating the main drawback of the Robin-Neumann algorithm.
翻译:dirichlet- Neumann 计划是流体结构互动( FSI ) 最常见的分解算法, 并且为这两个子问题所使用的解析器提供了高度的灵活性。 然而, 它并非没有缺陷: 首先, 内在的附加质效应往往会严重动摇数字解决方案。 此外, Dirichlet- Neumann 计划不能应用于 FSI 问题, 这些问题中, 一种不可压缩的流体被 Drichlet 边界完全封闭, 因为它无法满足数量限制 。 在过去十年中, 界面准Newton 方法已经证明可以控制附加质效应, 并大大加快趋同。 但是, 它并非没有在 Dirichlet- Neumann 组合中添加类似 的 Newton 式更新步骤。 但是, 它们并没有对数字性难题产生严重的影响。 作为替代, Robin- Neumann 计划将液体的边界条件概括化为一种罗宾性条件, 因为它无法满足数量限制的制约。 在事实上只解决了Drichlet- Neurmann 方法的后退缩, 要付出的代价是无法承受的一种强烈的依赖, 。