Twin-width is a newly introduced graph width parameter that aims at generalizing a wide range of "nicely structured" graph classes. In this work, we focus on obtaining good bounds on twin-width $\text{tww}(G)$ for graphs $G$ from a number of classic graph classes. We prove the following: - $\text{tww}(G) \leq 3\cdot 2^{\text{tw}(G)-1}$, where $\text{tw}(G)$ is the treewidth of $G$, - $\text{tww}(G) \leq \max(4\text{bw}(G),\frac{9}{2}\text{bw}(G)-3)$ for a planar graph $G$ with $\text{bw}(G) \geq 2$, where $\text{bw}(G)$ is the branchwidth of $G$, - $\text{tww}(G) \leq 183$ for a planar graph $G$, - the twin-width of a universal bipartite graph $(X,2^X,E)$ with $|X|=n$ is $n - \log_2(n) + \mathcal{O}(1)$ . An important idea behind the bounds for planar graphs is to use an embedding of the graph and sphere-cut decompositions to obtain good bounds on neighbourhood complexity.
翻译:双线宽度是一个新引入的图形宽度参数, 旨在将“ 精度结构” 图表类的宽度范围扩大为 $\ text{ tw} (G) 。 在这项工作中, 我们的重点是从一些经典图形类中获取双维$$G$( G) 的正弦值。 我们证明如下 : - $\ text{ tw} (G)\ cdoff 2\ cdoff text{ tw} (G)-1}$\ text{ tw} (G)$) 的宽度范围。 其中, $\ text{ tw} (G) 美元是$G$- text{ tw} 的树边际值。 (G)\\ leq (4\ text{ tw} (G) $, 平面图$\ text{bw} (G) $G) 的正弦值是$( n text_ text_ ww} 。